

Final Round 2023

The final round exam was given in the form of an online exam. Each participant was given a subset of 20 questions in random order. This paper version is only available for training purposes.

Question 1 : What are the roots of this function?:

$$f(x) = \left(\pi^{x} - \frac{1}{\pi^{2}}\right) \cdot \left(\frac{1}{\pi^{2}} - \pi^{2x}\right)$$
(A) {-1,-2} (B) {-1,2} (C) {1,-2} (D) {1,2}

Question 2 : Which of these numbers is divisible by 3 for all positive integers n?

(A)
$$2^{n} + (-1)^{n+1}$$
 (B) $2^{n} + (-1)^{n}$ (C) $2^{n} - (-1)^{n+1}$ (D) $2^{n+1} - (-1)^{n}$

Question 3: Let $\sigma(n)$ be the sum of all positive divisors of the integer *n*. What is the value of $\sigma(17^2)$?

(A) 237 (B) 290 (C) 307 (D) 337

Question 4 : What is the value of this sum?:

Question 5 : What is the ratio between the surface area and the circumference of an equilateral triangle with side length a?

(A) $\sqrt{3} \cdot a$ (B) $\frac{\sqrt{3}}{4} \cdot a$ (C) $\frac{1}{\sqrt{3}} \cdot a$ (D) $\frac{1}{4\sqrt{3}} \cdot a$

Question 6 : Let f(x) = 4 + 4x and g(x) = 1 - 2x. Find the smallest $a \in \mathbb{R}$ such that f(x) > g(x) for all x with x > a.

(A)
$$a = -1$$
 (B) $a = -1/2$ (C) $a = 1/2$ (D) $a = 1$

Question 7 : Find the derivative f'(x) of this function:

$$f(x) = x^{x}$$

- (A) $f'(x) = (\log(x) + 1/x) \cdot x^{x-1}$ (B) $f'(x) = (\log(x) + 1) \cdot x^{x-1}$
- (C) $f'(x) = (\log(x) + 1/x) \cdot x^x$ (D) $f'(x) = (\log(x) + 1) \cdot x^x$

IYMC.FR.2023

Question 8 : What is the value of this infinite sum?:

$$\sum_{n=0}^{\infty} \frac{2^n}{(1^n+2)^n}$$

(A)
$$1/2$$
 (B) $1/3$ (C) 2 (D) 3

Question 9 : How does this sequence of numbers continue?:

$$1, 2, 6, 12, 36, 72, \dots$$

(A) 144 (B) 216 (C) 244 (D) 286

Question 10 : The Riemann zeta function is defined by $\zeta(s) = \dots$

(A) $\sum_{n=0}^{\infty} 1/n^s$ (B) $\sum_{n=1}^{\infty} 1/n^s$ (C) $\sum_{n=0}^{\infty} 2^n/n^s$ (D) $\sum_{n=1}^{\infty} 2^n/n^s$

Question 11 : Which f(x) makes this equation true?:

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\text{p prime}} \frac{1}{f(x)}$$

(A) $f(x) = 1 - p^{-s}$ (B) $f(x) = 1 + p^{-s}$ (C) $f(x) = 1 - p^{s}$ (D) $f(x) = 1 + p^{s}$

Question 12 : Let $\omega(n)$ be the number of distinct prime factors of n. What is the value of $\omega(60)$?

(A) 2 (B) 3 (C) 4 (D) 5

Question 13 : Let $\omega(n)$ be the number of distinct prime factors of n. Under which condition is $\omega(mn) = \omega(m) + \omega(n)$?

(A) m|n (B) n|m (C) lcd(m,n) = 1 (D) gcd(m,n) = 1

Question 14 : What is the value of $\zeta(2)$?:

$$\zeta(2) = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots$$

IYMC.FR.2023

(A)
$$1/2$$
 (B) 2 (C) $\pi^2/3$ (D) $\pi^2/(2 \cdot 3)$

Question 15 : Find the numerical value of this expression:

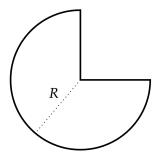
(A) 0 (B) -1 (C) 1 (D)
$$\sqrt{2}$$

Question 16 : What are the roots of this function?:

$$f(x) = x^4 + 2x^2 - 3$$

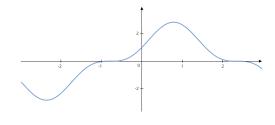
(A) $\{-3, -1\}$ (B) $\{-2, -1\}$ (C) $\{-1, 1\}$ (D) $\{-1, 2\}$

Question 17 : You are given the following functions:


$$f(x) = Ax^{3} + 3$$
$$g(x) = Bx^{2} + 2$$
$$h(x) = Cx - 1$$

They all intersect the point (1,1). What is the value of the product $A \cdot B \cdot C$?

(A) 0 (B) 1 (C) -2 (D) 4


Question 18 : Let $\varphi(x) = x^2 + 1$. What is the numerical value of $\varphi(\varphi(\varphi(2)))$?

Question 19 : You are given a circle with a radius R of which 1/4 is missing. What is the circumference of this figure (see drawing)?:

(A)
$$\left(\frac{3}{2}\pi + 2\right) \cdot R$$
 (B) $\left(\frac{3}{4}\pi + 2\right) \cdot R$ (C) $(2\pi + 2) \cdot R$ (D) $(3\pi + 2) \cdot R$

Question 20 : Given the following graph, find the function f(x):

(A) $f(x) = (\sin(x) - \cos(x))^3$ (B) $f(x) = (\sin(x) - \cos(x))^2$ (C) $f(x) = (\sin(x) + \cos(x))^3$ (D) $f(x) = (\sin(x) + \cos(x))^2$

Question 21 : The expression $(2+2^x)^2$ is equal to ...

(A) $4 + (4 + 2^x) \cdot 2^{2x}$	(B) $4 + (4 + 2^x) \cdot 2^x$
(C) $4 + (4 + 2^{2x}) \cdot 2^{2x}$	(D) $4 + (4 + 2^{2x}) \cdot 2^x$

Question 22 : Let $\alpha = \frac{1}{2}$, $\beta = \frac{1}{3}$ and $\gamma = \frac{1}{4}$. What is the numerical value of this fraction?:

$$\frac{\alpha+\beta+\gamma}{\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}}$$

(A)
$$1/24$$
 (B) $1/108$ (C) $13/24$ (D) $13/108$

Question 23 : Which *x* solves this equation?:

Question 24 : Solve this inequality for $x \in \mathbb{R}$ and x > 0:

$$\frac{1}{x} + \frac{2}{3} > \frac{1}{2x} + 3$$

(A) x < 3/13 (B) x < 6/13 (C) x < 3/14 (D) x < 6/14

IYMC.FR.2023

Question 25 : Which inequality is true for this number?:

(A)
$$1 \le z \le 2$$
 (B) $2 \le z \le 3$ (C) $3 \le z \le 4$ (D) $4 \le z \le 5$

Question 26 : You are given five multiple-choice questions. Each question has three incorrect choices and one correct choice. How likely do you answer none of them correctly if you guess randomly?

	$(A) \approx 15\%$	$(B) \approx 25\%$	$(C) \approx 35\%$	$(D) \approx 45\%$
--	--------------------	--------------------	--------------------	--------------------